
Carol S. Woodward
and

The SUNDIALS Team:
Peter Brown, Aaron Collier, Keith Grant,

Alan Hindmarsh, Steven Lee, and Radu Serban
Center for Applied Scientific Computing, LLNL

SUNDIALS: Suite of Nonlinear and
Differential/Algebraic Equation Solvers

Work performed under the auspices of the U. S. Department of Energy by
University of California Lawrence Livermore National Laboratory under

Contract W-7405-Eng-48. UCRL-PRES-223892

Outline

� SUNDIALS Overview
� ODE and DAE integration

— Initial value problems
— Implicit integration methods

� Nonlinear Systems
— Newton’s method and inexact Newton’s method
— Preconditioning

� Sensitivity analysis
— Definitions, applications, methods
— Forward sensitivity analysis
— Adjoint sensitivity analysis

� SUNDIALS: usage, applications, and availability

LLNL has a long history of R&D in ODE/DAE
methods and software

� Fortran solvers written at LLNL:
—VODE: stiff/nonstiff ODE systems, with direct linear solvers
—VODPK: with Krylov linear solver (GMRES)
—NKSOL: Newton-Krylov solver - nonlinear algebraic systems
—DASPK: DAE system solver (from DASSL)

� Recent focus has been on parallel solution of large-scale
problems and on sensitivity analysis

Push to solve large, parallel systems motivated
rewrites in C

� CVODE: rewrite of VODE/VODEPK [Cohen, Hindmarsh, 94]
� PVODE: parallel CVODE [Byrne and Hindmarsh, 98]
� KINSOL: rewrite of NKSOL [Taylor and Hindmarsh, 98]
� IDA: rewrite of DASPK [Hindmarsh and Taylor, 99]
� Sensitivity variants: SensPVODE, SensIDA, SensKINSOL

[Brown, Grant, Hindmarsh, Lee, 00-01]
� New sensitivity-capable solvers:

— CVODES [Hindmarsh and Serban, 02]
— IDAS – in development

� Organized into a single suite, SUNDIALS, including CVODE
and CVODES, IDA, KINSOL, and soon IDAS

The SUNDIALS package offers Newton solvers,
time integration, and sensitivity solvers

� CVODE: implicit ODE solver, y’ = f(y, t)
— Variable-order, variable step BDF (stiff) or implicit Adams (nonstiff)
— Nonlinear systems solved by Newton or functional iteration
— Linear systems by direct (dense or band) or iterative solvers

� IDA: implicit DAE solver, F(t, y, y’) = 0
— Variable-order, variable step BDF
— Nonlinear system solved by Newton iteration
— Linear systems by direct (dense or band) or iterative solvers

� KINSOL: Newton solver, F(u) = 0
— Inexact and Modified (with dense solve) Newton
— Linear systems by iterative or dense direct solvers

� CVODES: sensitivity-capable (forward & adjoint) CVODE
� IDAS: sensitivity-capable (forward & adjoint) IDA
� Iterative linear Krylov solvers: GMRES, BiCGStab, TFQMR

� Philosophy: Keep codes simple to use
� Written in C

—Fortran interfaces: fcvode, fida, and fkinsol
—Matlab interfaces: sundialsTB (cvodes and kinsol)

� Written in a data structure neutral manner
—No specific assumptions about data
—Application-specific data representations can be used

� Modular implementation
—Vector modules
—Linear solver modules

� Require minimal problem information, but offer user
control over most parameters

SUNDIALS was designed to easily interface
with legacy codes

Initial value problems (IVPs) come in the form
of ODEs and DAEs

� The general form of an IVP is given by

00 x)t(x
0)x,x(F

====
====D

� If is invertible, we solve for to obtain an ordinary
differential equation (ODE)

� Else, the IVP is a differential algebraic equation (DAE)

� A DAE has differentiation index i if i is the minimal number
of analytical differentiations needed to extract an explicit
ODE

x/F D∂∂∂∂∂∂∂∂ xD

Stiffness of an equation can significantly
impact whether implicit methods are needed

� (Ascher and Petzold, 1998): If the system has widely
varying time scales, and the phenomena that change on
fast scales are stable, then the problem is stiff

� Stiffness depends on
— Jacobian eigenvalues, λλλλ j

— System dimension
— Accuracy requirements
— Length of simulation

� In general a problem is stiff on [t0, t1] if

101 −−−−<<<<<<<<ℜℜℜℜ−−−−)(min)tt(jj
λλλλ

Dalquist test problem shows impact of stability
on step sizes for explicit and implicit methods

Dalquist test equation:
Exact solution:

Absolute stability requirement

Reason: If Re(λλλλ)<0, then |y(tn)| decays exponentially, and we
cannot tolerate growth in yn

Region of absolute stability:
where an integrator can be written as yn = R(z)yn-1, with time

step z = hλλλλ

,yy λλλλ====D 10 ====y
nt

n ey)t(y λλλλ
0====

,...,n,yy nn 211 ====≤≤≤≤ −−−−

{{{{ }}}}1≤≤≤≤∈∈∈∈====)z(R;CzS

Forward and backward Euler show different
stability restrictions

� Forward Euler:

So, if λλλλ < 0, FE has the step size restriction:

� Backward Euler:

So, if λλλλ < 0, BE has the step size restriction:

(((()))) λλλλλλλλ h)z(Ryhyy nnn ++++====⇒⇒⇒⇒++++==== −−−−−−−− 111

λλλλ−−−−
≤≤≤≤

2h

(((())))
λλλλ

λλλλ
h

)z(Ryhyy nnn −−−−
====⇒⇒⇒⇒++++==== −−−− 1

1
1

0>>>>h

Curtiss and Hirchfelder example

(((())))(((()))) 5050 −−−−====−−−−−−−−==== λλλλtcosyy�

0 0.5 1 1.5
0

0.5

1

1.5

Solution curves

time

y

0 0.5 1 1.5
0

0.5

1

1.5

Forward Euler
h=2.01/50

Curtiss and Hirchfelder example

(((())))(((()))) 5050 −−−−====−−−−−−−−==== λλλλtcosyy�

time

y

Implicit schemes
h=0.5 for BE

0 0.5 1 1.5
0

0.5

1

1.5
h=1.974/50
h=1.875/50

Forward Euler

0 0.5 1 1.5
0

0.5

1

1.5
Backward Euler
BDF(CVODE)

SUNDIALS has implementations of Linear
Multistep Methods (LMM)

� Two methods:
— Adams-Moulton (nonstiff); K1 = 1, K2 = k, k = 1,…,12
— BDF (stiff); K1 = k, K2 = 0, k = 1,…,5

� Nonlinear systems (BDF)
— ODE:

— DAE:

General form of LMM: ∑∑∑∑ ∑∑∑∑
==== ====

−−−−−−−− ====++++
1 2

0 0
0

K

i

K

i
ini,nnini,n yhy Dββββαααα

(((()))) (((()))) 0
1

0 ====−−−−−−−−≡≡≡≡ ∑∑∑∑
====

−−−−

k

i
ini,nnnnn yyfhyyG ααααββββ(((())))yfy ====D

(((()))) 0====y,yF D (((()))) (((()))) 0
1

1
0 ====

≡≡≡≡ ∑∑∑∑
====

−−−−
−−−−

n

k

i
ini,nnn y,yhFyG ααααββββ

Stability is very restricted for higher orders of
BDF methods

−8 −6 −4 −2 0 2 4 6 8
−4

−2

0

2

4

6

8

10

12
k=1
k=2
k=3
k=4
k=5
k=6

∑∑∑∑
====

−−−−====−−−−
k

i
ini,nnnn yyhy

1
0 ααααββββ D

CVODE solves y’=f(t,y)

� Variable order and variable step size methods:
— BDF (backward differentiation formulas) for stiff systems
— Implicit Adams for nonstiff systems

� (Stiff case) Solves time step for the system
— applies an explicit predictor to give yn(0)

— applies an implicit corrector with yn(0) as the initial guess

)y,t(fy ====D

∑∑∑∑
====

−−−− ++++====
q

j
nnjnjn)y(ftyy

1
0ββββ∆∆∆∆αααα

∑∑∑∑
====

−−−−−−−− ++++====
q

j
n

p
jn

p
j)(n ytyy

1
110 Dββββ∆∆∆∆αααα

Time steps are chosen to minimize the local
truncation error

� Time steps are chosen by:
— Estimate the error: E(∆∆∆∆t) = C(yn - yn(0))

–Accept step if ||E(∆∆∆∆t)||WRMS < 1
–Reject step otherwise

— Estimate error at the next step, ∆∆∆∆t’, as

— Choose next step so that ||E(∆∆∆∆t’)|| WRMS < 1
� Choose method order by:

— Estimate error for next higher and lower orders
— Choose the order that gives the largest time step meeting

the error condition

)t(E)tt()t(E q ∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆ 1++++′′′′≈≈≈≈′′′′

Computations weighted so no component
disproportionally impacts convergence

� An absolute tolerance is specified for each solution
component, ATOLi

� A relative tolerance is specified for all solution
components, RTOL

� Norm calculations are weighted by:

� Bound time integration error with:

The 1/6 factor tries to account for estimation errors

ii
i

ATOLyRTOL
1ewt
++++⋅⋅⋅⋅

==== (((()))) yewt1 y
1

2i
WRMS ∑∑∑∑

====

⋅⋅⋅⋅====
N

i

i

N

6
1 y 0n <<<<−−−−)(ny

Nonlinear system will require nonlinear solves

� Use predicted value as the initial iterate for the nonlinear
solver

� Nonstiff systems: Functional iteration

� Stiff systems: Newton iteration

— ODE:

— DAE:

(((()))))m(nn)m(n yfhy 01 ββββ====++++

(((()))) (((()))))m(n)m(n)m(n yGyyM −−−−====−−−−++++1

nh,yfIM 0ββββγγγγγγγγ ====∂∂∂∂∂∂∂∂−−−−≈≈≈≈

(((())))nh,yFyFM 01 ββββγγγγγγγγ ====∂∂∂∂∂∂∂∂++++∂∂∂∂∂∂∂∂≈≈≈≈ D

SUNDIALS provides many options for linear
solvers

� Iterative linear solvers
— Result in inexact Newton solver
— Scaled preconditioned solvers: GMRES, Bi-CGStab, TFQMR
— Only require matrix-vector products
— Require preconditioner for the Newton matrix, M

� Jacobian information (matrix or matrix-vector product) can
be supplied by the user or estimated with finite difference
quotients

� Two options require serial environments and some pre-
defined structure to the data

— Direct dense
— Direct band

An inexact Newton-Krylov method can be used
to solve the implicit systems

� Krylov iterative method finds linear system solution in
Krylov subspace:

� Only require matrix-vector products
� Difference approximations to the matrix-vector product are

used,

� Matrix entries need never be formed, and memory savings
can be used for a better preconditioner

θθθθ
θθθθ)x(F)vx(Fv)x(J −−−−++++≈≈≈≈

}...,rJ,Jr,r{)r,J(K 2====

IDA solves F(t, y, y’) = 0

� C rewrite of DASPK [Brown, Hindmarsh, Petzold]
� Variable order / variable coefficient form of BDF
� Targets: implicit ODEs, index-1 DAEs, and Hessenberg

index-2 DAEs
� Optional routine solves for consistent values of y0 and y0’

— Semi-explicit index-1 DAEs, differential components known,
algebraic unknown OR all of y0’ specified, y0 unknown

� Nonlinear systems solved by Newton-Krylov method

� Optional constraints: yi > 0, yi < 0, yi ≥≥≥≥ 0, yi ≤≤≤≤ 0

KINSOL solves F(u) = 0

� C rewrite of Fortran NKSOL (Brown and Saad)
� Inexact Newton solver: solves J ∆∆∆∆un = -F(un) approximately
� Modified Newton (with direct solves) – this freezes the

Newton matrix over a number of iterations
� Krylov solver: scaled preconditioned GMRES, TFQMR, Bi-

CGStab
— Optional restarts for GMRES
— Preconditioning on the right: (J P-1)(Ps) = -F

� Direct solvers: dense and band (serial & special structure)
� Optional constraints: ui > 0, ui < 0, ui ≥≥≥≥ 0 or ui ≤≤≤≤ 0
� Can scale equations and/or unknowns
� Dynamic linear tolerance selection

1. Starting with x0, want x* such that F(x*) = 0

2. Repeat for each k until

a. Solve (approximately)

b. Update, xk+1 = xk + λλλλsk

An inexact Newton’s method is used to solve
the nonlinear problem

)x(Fs)x(J kkk −−−−====

tol)x(F 1k ≤≤≤≤++++

� tol may be chosen adaptively
based on accuracy
requirements

� λλλλ is a search parameter
� ||.|| is a weighted L-2 norm

Linear stopping tolerances must be chosen to
prevent “oversolves”

� Newton method assumes a linear model
— Bad approximation far from solution, loose tol.

— Good approximation close to solution, tight tol.

� Eisenstat and Walker (SISC 96)
— Choice 1

— Choice 2

� ODE literature

(((())))2)1k()k(k FF9.0 −−−−====ηηηη

1111 −−−−−−−−−−−−−−−− −−−−−−−−==== kkkkkk FsJFFηηηη

05.0====kηηηη

)x(Fs)x(J)x(F kk1kkk ηηηη≤≤≤≤++++ ++++

The linear system is solved to a given tolerance:

Inexact methods maintain the fast rate of
convergence of Newton’s method

� Convergence of Newton’s method is q-quadratic locally,
for some constant C

� Convergence of an inexact Newton method is
— q-linear if, is constant in k

— q-super-linear if,

— q-quadratic if for some constant C

� Eisenstat and Walker methods are q-quadratic

2*k*1k xxCxx −−−−≤≤≤≤−−−−++++

0lim k

k
====

∞∞∞∞→→→→
ηηηη

2k1kkk)x(FCs)x(J)x(F ≤≤≤≤++++ ++++

kηηηη

Line-search globalization for Newton’s method
can enhance robustness

� User can select:
— Inexact Newton

— Inexact Newton with line search

� Line searches can provide more flexibility in the initial
guess (larger time steps)

� Take, xk+1 = xk + λλλλsk+1, for λλλλ

 chosen appropriately (to
satisfy the Goldstein-Armijo conditions):

— sufficient decrease in F relative to the step length

— minimum step length relative to the initial rate of decrease

— full Newton step when close to the solution

Preconditioning is essential for large problems
as Krylov methods can stagnate

� Preconditioner P must approximate Newton matrix, yet be
reasonably efficient to evaluate and solve.

� Typical P (for time-dep. problem) is
� The user must supply two routines for treatment of P:

— Setup: evaluate and preprocess P (infrequently)
— Solve: solve systems Px=b (frequently)

� User can save and reuse approximation to J, as directed
by the solver

� SUNDIALS offers hooks for user-supplied preconditioning

JJJI ≈− ~,~γ

Sensitivity Analysis

� Sensitivity Analysis (SA) is the study of how the variation in
the output of a model (numerical or otherwise) can be
apportioned, qualitatively or quantitatively, to different
sources of variation in inputs.

� Applications:
— Model evaluation (most and/or least influential parameters),

Model reduction, Data assimilation, Uncertainty quantification,
Optimization (parameter estimation, design optimization,
optimal control, …)

� Approaches:
— Forward sensitivity analysis
— Adjoint sensitivity analysis

Sensitivity Analysis Approaches

Computational cost:
(1+Np)Nx increases with Np

=
=
)()0(

0),,,(

0 pxx
ptxxF �

p
ii

pixix Ni
dpdxs
FsFsF

i ,,1,
)0(

0

0

�

�
� =

=
=++

px gsg
dp
dg

pxtg

+=

),,(

()TT
pxpp

T

xFdtFg
dp
dG

dtpxtgpxG

00
**

0

)(

),,(),(

∫

∫

−−=

=

�
λλ

==
−=−′

TtxF
gFF

px

xxx

at...
)(

*

**

�

�

λ
λλ

Parameter dependent system

FSA ASA

Computational cost:
(1+Ng)Nx increases with Ng

FSA - Methods

� Staggered Direct Method: On each time step, converge Newton
iteration for state variables, then solve linear sensitivity system
— Requires formation and storage of Jacobian matrices, Not matrix-

free, Errors in finite-difference Jacobians lead to errors in
sensitivities

� ���� Simultaneous Corrector Method: On each time step, solve the
nonlinear system simultaneously for solution and sensitivity
variables
— Block-diagonal approximation of the combined system Jacobian,

Requires formation of sensitivity R.H.S. at every iteration

� ���� Staggered Corrector Method: On each time step, converge
Newton for state variables, then iterate to solve sensitivity system
— With Krylov

FSA – Generation of the sensitivity system

� Analytical
� Automatic differentiation

— ADIFOR, ADIC, ADOLC

— complex-step derivatives

� Directional derivative approximation

),min(
2

),,(),,(

),1max(
1

),max(

2
),,(),,(

2
),,(),,(

xi
iiii

i
i

iWRMSii
x

ii

i

iiii

i

x

ixix
i

epsxtfepsxtf
p
fs

x
f

or
ps

rtolp

epxtfepxtf
p
f

psxtfpsxtfs
x
f

σσσ
σ

σσσσ

σ
σ

εσ

σ
σσ

σ
σσ

=−−−++≈
∂
∂+

∂
∂

=

=

−−+≈
∂
∂

−−+≈
∂
∂

i
ii p

fs
x
fs

pxtfx

∂
∂+

∂
∂=

=

D

D),,(

CVODES case

ASA – Implementation

� Solution of the forward problem is required for the adjoint problem
���� need predictable and compact storage of solution values for the
solution of the adjoint system

— Cubic Hermite or variable-degree polynomial interpolation
— Simulations are reproducible from each checkpoint
— Force Jacobian evaluation at checkpoints to avoid storing it
— Store solution and first derivative
— Computational cost: 2 forward and 1 backward integrations

t0t0 tftf

ck0ck0 ck1ck1 ck2 …ck2 …

CheckpointingCheckpointing

ASA – Generation of the sensitivity system

� Analytical
— Tedious
— For PDEs: in general, adjoint and discretization operators do

NOT commute
� Automatic differentiation

— Certainly the most attractive alternative
— Reverse AD tools not as mature as forward AD tools

� Finite difference approximation
— NOT an option (computational cost equivalent to FSA!)

The SUNDIALS vector module is generic

� Data vector structures can be user-supplied
� The generic NVECTOR module defines:

— A content structure (void *)
— An ops structure – pointers to actual vector operations

supplied by a vector definition
� Each implementation of NVECTOR defines:

— Content structure specifying the actual vector data and any
information needed to make new vectors (problem or grid
data)

— Implemented vector operations
— Routines to clone vectors

� Note that all parallelism (if needed) resides in reduction
operations: dot products, norms, mins, etc.

SUNDIALS provides serial and parallel
NVECTOR implementations

� Use is, of course, optional
� Vectors are laid out as an array of doubles (or floats)
� Appropriate lengths (local, global) are specified
� Operations are fast since stride is always 1
� All vector operations are provided for both serial and

parallel cases
� For the parallel vector, MPI is used for global reductions

� These serve as good templates for creating a user-
supplied vector structure around a user’s own existing
structures

SUNDIALS provides Fortran interfaces

� CVODE, IDA, and KINSOL
� Cross-language calls go in both directions:
� Fortran user code �������� interfaces �������� CVODE/KINSOL/IDA

� Fortran main ���� interfaces to solver routines
� Solver routines ���� interface to user’s problem-defining

routine and preconditioning routines

� For portability, all user routines have fixed names
� Examples are provided

SUNDIALS provides Matlab interfaces

� CVODES, KINSOL, and (next release) IDA
� The core of each interface is a single MEX file which

interfaces to solver-specific user-callable functions
� Guiding design philosophy: make interfaces equally familiar

to both SUNDIALS and Matlab users
— all user-provided functions are Matlab m-files
— all user-callable functions have the same names as the

corresponding C functions
— unlike the Matlab ODE solvers, we provide the more flexible

SUNDIALS approach in which the 'Solve' function only returns
the solution at the next requested output time.

� Includes complete documentation (including through the
Matlab help system) and several examples

Structure of SUNDIALS

CVODE CVODES KINSOL

SUNDIALS

IDA

DENSE

SPBCGSPGMR

BAND

SPTFQMR

CVDIAG CVDENSE CVBAND

CVSPGMR CVSPBCG CVSPTFQMR IDASPGMR

IDADENSE IDABAND

IDASPBCG IDASPTFQMR KINSPGMR

KINDENSE

KINSPBCG

KINBAND

KINSPTFQMR

PARALLEL

NVECTOR

SERIAL

GENERIC LINEAR SOLVERS

LINEAR SOLVER
INTERFACES

NVECTOR MODULES

SUNDIALS code usage is similar across the
suite

#include “cvode.h”
#include “cvode_spgmr.h”
#include “nvector_*.h”

y = N_VNew_*(n,…);
cvmem = CVodeCreate(CV_BDF,CV_NEWTON);
flag = CVodeSet*(…);
flag = CVodeMalloc(cvmem,rhs,t0,y,…);
flag = CVSpgmr(cvmem,…);
for(tout = …) {

flag = CVode(cvmem, …,y,…); }

NV_Destroy(y);
CVodeFree(&cvmem);

� Have a series of Set/Get routines to set options
� For CVODE with parallel vector implementation:

User main routine
Specification of problem parameters
Activation of sensitivity computation
User problem-defining function
User preconditioner function

User main routine
Specification of problem parameters
Activation of sensitivity computation
User problem-defining function
User preconditioner function

Options
- sensitivity approach (simultaneous or staggered)
- sensitivity residuals: analytical, FD(DQ), AD, CS
- error control on sensitivity variables
- user-defined tolerances for sensitivity variables

Options
- sensitivity approach (simultaneous or staggered)
- sensitivity residuals: analytical, FD(DQ), AD, CS
- error control on sensitivity variables
- user-defined tolerances for sensitivity variables

Forward Sensitivity Analysis in SUNDIALS

Band
Linear
Solver

Band
Linear
Solver

Preconditioned
Iterative

Linear Solver

Preconditioned
Iterative

Linear Solver

General
Preconditioner

Modules

General
Preconditioner

Modules

Vector
Kernels
Vector
Kernels

Dense
Linear
Solver

Dense
Linear
Solver

CVODES
ODE

Integrator

CVODES
ODE

Integrator

IDAS
DAE

Integrator

IDAS
DAE

Integrator

#include “cvodes.h”
#include “cvodes_spgmr.h”
#include “nvector_*.h”

y = N_VNew*(n,…);
cvmem = CVodeCreate(CV_BDF,CV_NEWTON);
flag = CVodeSet*(…);
flag = CVodeMalloc(cvmem,rhs,t0,y,…);
flag = CVSpgmr(cvmem,…);
yS = N_VNewVectorArray_*(Ns,…);
flag = CVodeSetSens*(…);
flag = CVodeSensMalloc(cvmem,…,yS);
for(tout = …) {

flag = CVode(cvmem, …,y,…);
flag = CVodeGetSens(cvmem,t,yS);

}
NV_Destroy(y);
NV_DestroyVectorArray(yS,Ns);
CVodeFree(&cvmem);

Adjoint Sensitivity Analysis in SUNDIALS

User main routine
Activation of sensitivity computation
User problem-defining function
User reverse function
User preconditioner function
User reverse preconditioner function

User main routine
Activation of sensitivity computation
User problem-defining function
User reverse function
User preconditioner function
User reverse preconditioner function

(Modified)
Vector
Kernels

(Modified)
Vector
Kernels

Implementation
- check point approach; total cost is 2 forward
solutions + 1 backward solution
- integrate any system backwards in time
- may require modifications to some user-defined
vector kernels

Implementation
- check point approach; total cost is 2 forward
solutions + 1 backward solution
- integrate any system backwards in time
- may require modifications to some user-defined
vector kernels

Band
Linear
Solver

Band
Linear
Solver

Preconditioned
Iterative

Linear Solver

Preconditioned
Iterative

Linear Solver

General
Preconditioner

Modules

General
Preconditioner

Modules

Dense
Linear
Solver

Dense
Linear
Solver

CVODES
ODE

Integrator

CVODES
ODE

Integrator

IDAS
DAE

Integrator

IDAS
DAE

Integrator

#include “cvodes.h”
#include “cvodea.h”
#include “cvodes_spgmr.h”
#include “nvector_*.h”

y = N_VNew_*(n,…);
cvmem = CVodeCreate(CV_BDF,CV_NEWTON);
CVodeSet*(…); CVodeMalloc(…); CVSpgmr(…);

cvadj = CVadjMalloc(cvmem,STEPS);
flag = CVodeF(cvadj,…,&nchk);
yB = N_VNew_*(nB,…);
CVodeSet*B(…); CVodeMallocB(…); CVSpgmrB(…);
for(tout = …) {

flag = CVodeB(cvadj, …,yB,…);
}

NV_Destroy(y);
NV_Destroy(yB);
CVodeFree(&cvmem);
CVadjFree(&cvadj);

Applications of SUNDIALS

� Parallel CVODE is being used in a 3D tokamak turbulence
model in LLNL’s Magnetic Fusion Energy Division. A
typical run has 7 unknowns on a 64x64x40 mesh, with up
to 60 processors

� KINSOL with a HYPRE multigrid preconditioner is being
applied within CASC to solve a nonlinear Richards’
equation for pressure in porous media flows. Fully
scalable performance was obtained on up to 225
processors on ASCI Blue.

� CVODE, KINSOL, IDA, with MG preconditioner, are being
used to solve 3D neutral particle transport problems in
CASC. Scalable performance obtained on up to 5800
processors on ASCI Red.

Applications with sensitivity analysis

� SensPVODE, SensKINSOL, SensIDA used to determine solution
sensitivities in neutral particle transport applications.

� IDA and SensIDA used in a cloud and aerosol microphysics
model at LLNL to study cloud formation processes.

� SensKINSOL used for sensitivity analysis of groundwater
simulations.

� CVODES used for sensitivity analysis of chemically reacting
flows (SciDAC collaboration with Sandia Livermore).

� CVODES used for sensitivity analysis of radiation transport
(diffusion approximation).

� KINSOL+CVODES used for inversion of large-scale time-
dependent PDEs (atmospheric releases).

Influence of Opacity Parameters
in Radiation-Diffusion Models

� Opacities and EOS are often given
through look-up tables
Consider exponential opacities of
the form

� Problem dimension: Nx = 100, Np = 1
� Find sensitivities of temperatures

w.r.t. opacity parameters
(SensPVODE)

()
()() 44)(,

/,3

sourceRMMP

R
RRRR

R

caTxEaTTc

EEET
c

t
E

χρκ
ρκ

+−+

∇
∇+

⋅∇=∂
∂

()()RMMP
M EaTTct

E −−=∂
∂ 4,ρκ

() βαωρρκ TT =,

Scaled sensitivity of T_R w.r.t beta.
Early time effect of Plank opacity
Later effects of Rosseland opacity

Influence of Relative Permeability Parameters in
Groundwater Simulation

� Sensitivity of water pressure to parameters
in the expression for relative permeability:

� Problem dimension: Nx = 18750, Np = 3
� Software: KINSOL and SensKINSOL

[] ()

() ()

() 2/

2
1

1

11
)(

)()(

nn

mnn

r

p

pp
prk

qzgppKk
t

ps

+

+−
=

=∇−∇⋅∇−∂
∂

−−

α

αα

ρµ
ρφρ

2

21 ln
bn

aKa
=

+=α

Influence of Relative Permeability Parameters in
Groundwater Simulation - Results

Sensitivity to a1 Sensitivity to a2 Sensitivity to b2

Atmospheric Event Reconstruction

0,)(
),0(,0

),0(,0

0 =Ω=
×Ω∂=⋅∇

×Ω=+⋅∇+∆−

tatinxcc
Tonnc

Tinfvcckct
�

�

()∑∫ ∫
= Ω

+Ω−−=ℑ
rN

j t
jcf

fRdtdxxccfc
1

2*

,
)(

2
1)(

2
1:),(min βδ

()
Ttatinx

Tonnvk
Tinccgvkt

=Ω=
×Ω∂=⋅+∇

×Ω=⋅∇−∆−−

,0)(
),0(,0

),0(,),(*

λ
λλ

λλλ
��

�

)),((ffcf ℑ∇ 0)0(c∂∂ℑ=λ

Atmospheric Event Reconstruction

� CVODES – for gradient and Hessian-vector products
� KINSOL – for NLP solution

� Problem dimensions: NODE=4096, NNLP=1024

)(fH NG−)(* xf
v
�

Current and Future Work

� IDAS (forward and adjoint sensitivity variant of IDA)
— Early 2007

� Automatic generation of derivative information
— Incorporation of AD tools (forward/reverse)

� Improved checkpointing / alternatives to checkpointing
— Storage of integrator decision history

Availability

Web site:
Individual codes download
SUNDIALS suite download
User manuals
User group email list

The SUNDIALS Team
Peter Brown
Aaron Collier
Keith Grant
Alan Hindmarsh
Steven Lee
Radu Serban
Carol Woodward

Open source BSD license
www.llnl.gov/CASC/sundials

Publications
www.llnl.gov/CASC/nsde

end

Forward Sensitivity Analysis

� For a parameter dependent system

find si=dx/dpi by simultaneously solving the original system
with the Np sensitivity systems obtained by differentiating
the original system with respect to each parameter in turn:

� Gradient of a derived function
� Obtain gradients with respect to p for any derived function
� Computational cost - (1+Np)Nx - increases with Np

px gsgdpdgpxtg +=⇒),,(

=
=
)()0(

0),,,(

0 pxx
ptxxF D

p
ii

pixix Ni
dpdxs
FsFsF

i ,,1,
)0(

0

0

l

D
D =

=
=++

Adjoint Sensitivity Analysis

1

**

)(,,,

),(0
),,(

−∃
∂
∂=

∂
∂=

∂
∂=

−=
−=++→

=
=

CB
x
fC

y
fB

x
fA

gB
gCA

pxf
pyxfx

add

y

x
a

d

λ
ηλλDD

Tt
CT

=
= **)(ξλ

0* =
=TtxF

D
λ ptx

T
pp xFdtFg

dp
dG

00
*

0
*)()(

=
+−= ∫ Dλλ

Tt
a
pyp

T a
p

d
pp fCBgxdtffg

dp
dG

=
−−+++= ∫ 1

0
*

0
**)()0()(ληλ

Tty CCBgT
=

−−= 1*)()(λ

a
pp

a
pp

a
yyy

fxfCxpxf
CBggCBgB

Tt

**

1***

0),(
)(

: At

ξλ
ξξλ

−=⇒−=⇒=
−=⇒−=⇒−=

=
−

TT
pxpp

T

xFdtFg

dtpxtg

p
G

pxG

00
**

0

|)()(

),,(

d
d

),(

∫ −−
∫

=

=

D
λλ

==
−=−′

TtxF
xgFF

px

xx

at...
)(

*

**

D

D

λ
λλ

impose final conditions of the form

� index-0 and index-1 DAE

� Hessenberg index-2 DAE

